Math 246B Lecture 3 Notes

Daniel Raban

January 11, 2019

1 Local Uniform Convergence, Upper Semicontinuity, and Subharmonic Functions

1.1 Local uniform convergence of harmonic functions

Theorem 1.1. Let $\Omega \subseteq \mathbb{R}^2$ be open, and let $u \in C(\Omega)$ be such that for all $a \in \Omega$, there exists $R_n \to 0$ such that

$$u(a) = \frac{1}{2\pi R_n} \int_{|y|=R_n} u(a+y) \, ds(y)$$

for all n. Then $u \in H(\Omega)$.

Corollary 1.1. Let $u_j \in H(\Omega)$ be a sequence such that $u_k \to u$ locally uniformly in Ω . Then $u \in H(\Omega)$, and for every $\alpha = (\alpha_1, \alpha_2) \in \mathbb{N}^2$, we have $\partial^{\alpha} u_k \to \partial^{\alpha} u$ locally uniformly in Ω . Here, $\partial^{\alpha} = \partial^{\alpha_1}_{x_1} \partial^{\alpha_2}_{x_2}$.

Proof. By the theorem, u has the mean value property, so $u \in H(\Omega)$. If $\{|x-a| \leq R\} \subseteq \Omega$, write (for $|x-a| \leq R/2$)

$$\partial^{\alpha} u_k(x) - \partial^{\alpha} u(x) = \frac{1}{2\pi R} \partial_x^{\alpha} \int_{|y|=R} P_R(x-a,y) (u_k(a+y) - u(a+y)) \, ds(y)$$

= $\frac{1}{2\pi R} \int_{|y|=R} \partial_x^{\alpha} P_R(x-a,y) (u_k(a+y) - u(a+y)) \, ds(y).$

Here, $|\partial_x^{\alpha} P_R(x-a,y)| \leq C_{\alpha,R}$ for any |y| = R and $|x-a| \leq R/2$. Therefore,

$$|\partial^{\alpha} u_k - \partial^{\alpha} u| \le C_{\alpha,R} \max_{|y|=R} |u(a+y) - u_j(a+y)| \to 0.$$

Covering a compact set $K \subseteq \Omega$ by finitely many open discs of this form $|x - a| \leq R/2$ for R = R(a) > 0, we get that $\partial^{\alpha} u_k \to \partial^{\alpha} u$ uniformly on K.

1.2 Upper semicontinuous functions

Definition 1.1. Let X be a metric space. A function $u: X \to [-\infty, \infty)$ is called **upper semicontinuous** if for every $a \in \mathbb{R}$, the set $\{x \in X : u(x) < a\}$ is open.

Proposition 1.1. A function $u: X \to [-\infty, \infty)$ is upper semicontinuous if and only if $\limsup_{y\to x} u(y) \le u(x)$ for all $x \in X$.

Example 1.1. Let $F \subseteq X$ is closed. Then $\mathbb{1}_F$ is upper semicontinuous.

Proposition 1.2. If u is upper semicontinuous, and $K \subseteq X$ is compact, then u is bounded above, and $\sup_{K} u$ is achieved.

Proposition 1.3. Let $u : X \to [-\infty, \infty)$ be upper semicontinuous and bounded above. Then there exists a sequence $u_j \in C(X)$ such that $u_1 \ge u_2 \ge \cdots \ge u$ and $u_j \to u$ pointwise.

Example 1.2. Let $\Omega \subseteq \mathbb{C}$ be open, and let $f \in \text{Hol}(\Omega)$. Then $u = \log |f|$ (with $\log(0) = -\infty$) is upper semicontinuous.

1.3 Subharmonic functions

Definition 1.2. Let $\Omega \subseteq \mathbb{R}^2$ be open. We say that a function $u : \Omega \to [-\infty, \infty)$ is subharmonic if

- 1. u is upper semicontinuous.
- 2. If $K \subseteq \Omega$ is compact and $h \in C(K) \cap H(K^o)$ is such that $u \leq h$ on ∂K , then $u \leq h$ on K.

Example 1.3. If u is harmonic, then by the mean value property, u is subharmonic.

Proposition 1.4. Let $(u_{\alpha})_{\alpha \in A}$ be a family of subharmonic functions on Ω such that $u = \sup_{\alpha} u_{\alpha} < \infty$ pointwise and u is upper semicontinuous. Then u is subharmonic. If (u_j) is a decreasing sequence of subharmonic functions, then $u = \lim u_j$ is subharmonic.

Proof. The first statement is immediate from the definition. For the second statement, first note that that $u = \lim u_j = \inf u_j$ is upper semicontinuous (if u_α is upper semicontinuous for each α , then $\inf_{\alpha} u_\alpha$ is, as well).

Now let $K \subseteq \Omega$ be compact, let $h \in C(K) \cap H(K^o)$, and let $u \leq h$ on ∂K . Let $\varepsilon > 0$, and let $x_0 \in \partial K$. Then there exists a j such that $u_j(x_0) < u(x_0) + \varepsilon \leq h(x_0) + \varepsilon$. Then $(u_j - h)(x_0)$, where $u_j - h$ is upper semicontinuous on K. So there is a neighborhood V_{x_0} of x_0 such that $u_j(x) - h(x) < \varepsilon$ for all $x \in V_{x_0} \cap \partial K$. Then, for all $k \geq j$, $u_k(x) - h(x) < \varepsilon$ for all $x \in V_{x_0} \cap \partial K$. Covering the compact set ∂K by finitely many open sets of the form V_{x_0} , we get $u_j \leq h + \varepsilon$ on ∂K for all large j. By the subharmonicity of the u_j , we get that $u_j \leq h + \varepsilon$ on K, so $u \leq h$ on K. **Remark 1.1.** This is the same argument as in the standard proof of Dini's theorem in elementary analysis.

Theorem 1.2. Let $u : \Omega \to [-\infty, \infty)$ be upper semicontinuous. The following are equivalent:

- 1. u is subharmonic
- 2. (local sub-mean value inequality): For every $a \in \Omega$,

$$u(a) \le \frac{1}{2\pi R} \int_{|y|=R} u(a+y) \, ds(y)$$

for all small R > 0.

3. For every $a \in \Omega$,

$$u(a) \le \frac{1}{\pi R^2} \iint_{|y| \le R} u(a+y) \, dy$$

for all small R > 0, where dy is Lebesgue measure in \mathbb{R}^2 .

We will prove these, along with more equivalences, next time.