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1 Local Uniform Convergence, Upper Semicontinuity, and
Subharmonic Functions

1.1 Local uniform convergence of harmonic functions

Theorem 1.1. Let 2 C R? be open, and let u € C(Q) be such that for all a € Q, there
exists R,, — 0 such that

1

u(a) = 21 R

/ u(a +) ds(y)
ly|=Rn

for alln. Then u € H(S).

Corollary 1.1. Let uj € H() be a sequence such that u, — u locally uniformly in Q.
Then v € H(RY), and for every a = (a1, as) € N2, we have 0%uy, — 0%u locally uniformly
in Q. Here, 0% = 031 0;2.

Proof. By the theorem, u has the mean value property, so v € H(Q2). If {|x—a| < R} C Q,
write (for |z —a| < R/2)

(o) = 0ule) = 50t [ Pafe o) (onla ) - slo ) st
= 5o PR o)l )~ - 9) ().

Here, |0¢ Pr(z — a,y)| < Cq g for any |y| = R and |z — a| < R/2. Therefore,

|0%ug, — 0%u| < Cu.r max lu(a +y) — uj(a+y)| — 0.
ol

Covering a compact set K C Q by finitely many open discs of this form |x — a| < R/2 for
R = R(a) > 0, we get that 0%uy, — 0%u uniformly on K. O



1.2 Upper semicontinuous functions

Definition 1.1. Let X be a metric space. A function u : X — [—00,00) is called upper
semicontinuous if for every a € R, the set {x € X : u(z) < a} is open.

Proposition 1.1. A function u : X — [—00,00) is upper semicontinuous if and only if
limsup,_,, u(y) < u(x) for allz € X.

Example 1.1. Let FF C X is closed. Then 1 is upper semicontinuous.

Proposition 1.2. If u is upper semicontinuous, and K C X is compact, then u is bounded
above, and supy u is achieved.

Proposition 1.3. Let u : X — [—00,00) be upper semicontinuous and bounded above.
Then there exists a sequence u; € C(X) such that vy > ug > -+ > u and uj — u
pointwise.

Example 1.2. Let Q@ C C be open, and let f € Hol(2). Then u = log |f| (with log(0) =
—00) is upper semicontinuous.

1.3 Subharmonic functions

Definition 1.2. Let & C R? be open. We say that a function u : Q — [—o00,00) is
subharmonic if

1. w is upper semicontinuous.

2. If K € Qis compact and h € C(K) N H(K?) is such that u < h on 0K, then u < h
on K.

Example 1.3. If v is harmonic, then by the mean value property, u is subharmonic.

Proposition 1.4. Let (uq)aca be a family of subharmonic functions on Q such that u =
Sup, uq < 00 pointwise and u is upper semicontinuous. Then u is subharmonic. If (uj) is
a decreasing sequence of subharmonic functions, then v = limu; is subharmonic.

Proof. The first statement is immediate from the definition. For the second statement, first
note that that u = limwu; = inf u; is upper semicontinuous (if u, is upper semicontinuous
for each a, then inf, u, is, as well).

Now let K C Q be compact, let h € C(K) N H(K?), and let u < h on K. Let ¢ > 0,
and let 9 € OK. Then there exists a j such that u;(xo) < u(zo) + ¢ < h(zg) + . Then
(uj — h)(zo), where uj — h is upper semicontinuous on K. So there is a neighborhood V;,
of zy such that uj(z) —h(xz) < € for all z € V;; NOK. Then, for all k > j, up(x) —h(x) < ¢
for all x € V,,, NOK. Covering the compact set 0K by finitely many open sets of the form
Vios We get uj < h+¢€ on OK for all large j. By the subharmonicity of the u;, we get that
uj <h+eon K,sou<honK. OJ



Remark 1.1. This is the same argument as in the standard proof of Dini’s theorem in
elementary analysis.

Theorem 1.2. Let u: ) — [—00,00) be upper semicontinuous. The following are equiva-
lent:

1. u is subharmonic

2. (local sub-mean value inequality): For every a € (2,

1
<
27TR |y|:R

u(a) u(a +y) ds(y)

for all small R > 0.
3. For every a € ,

u(a) < WLRQ //MSRu(a +y)dy

for all small R > 0, where dy is Lebesque measure in R2.

We will prove these, along with more equivalences, next time.
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